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Abstract. We propose a plasma model for spectral statistics displaying level repulsion without long-range
spectral rigidity, i.e. statistics intermediate between random matrix and Poisson statistics similar to the
ones found numerically at the critical point of the Anderson metal-insulator transition in disordered systems
and in certain dynamical systems. The model emerges from Dysons one-dimensional gas corresponding to
the eigenvalue distribution of the classical random matrix ensembles by restricting the logarithmic pair
interaction to a finite number k of nearest neighbors. We calculate analytically the spacing distributions
and the two-level statistics. In particular we show that the number variance has the asymptotic form
Σ2(L) ∼ χL for large L and the nearest-neighbor distribution decreases exponentially when s → ∞,
P (s) ∼ exp(−Λs) with Λ = 1/χ = kβ + 1, where β is the inverse temperature of the gas (β = 1, 2
and 4 for the orthogonal, unitary and symplectic symmetry class respectively). In the simplest case of
k = β = 1, the model leads to the so-called Semi-Poisson statistics characterized by particular simple
correlation functions e.g. P (s) = 4s exp(−2s). Furthermore we investigate the spectral statistics of several
pseudointegrable quantum billiards numerically and compare them to the Semi-Poisson statistics.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 03.65.Sq Semiclassical theories
and applications – 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion

1 Introduction

Since the advent of random matrix theory there has been
considerable interest in the statistical analysis of spectra
[1–4]. Two diametrically opposed statistical distributions
have been found to be of universal relevance: the Poisson
distribution, i.e. completely uncorrelated levels, and the
Wigner-Dyson distributions of random matrix theory. The
prominent features of these distributions are conveniently
characterized with the help of spectral observables such
as the nearest-neighbor spacing distribution P (s) and the
number variance Σ2(L) (the variance of the number of
levels in an energy interval of length L in the unfolded
spectrum). The former stresses the correlations on a short
scale, while the latter measures the stiffness of the spec-
trum, i.e. long-range spectral correlations. For the stan-
dard random matrix ensembles (orthogonal, unitary and
symplectic symmetry labeled by β = 1, 2 and 4 respec-
tively) the spacing distribution is approximately given by
the Wigner surmise and the number variance increases
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only logarithmically with large L,

P (s) = aβ s
β exp(−cβ s2)

Σ2(L) ∼ 2
βπ2

log(L) (L→∞) (1)

(aβ and cβ are determined by normalization and by requir-
ing the mean level spacing to be one). Thus the Wigner-
Dyson distributions are marked by level repulsion and
long-range spectral rigidity. In contrast, for the Poisson
distribution one has neither level repulsion nor spectral
rigidity,

P (s) = exp(−s)
Σ2(L) = L . (2)

In the present article we devise a discrete set of statistical
distributions with properties intermediate between those
of the Poisson and Wigner-Dyson distributions, namely
level repulsion

P (s) ∼ sβ (s→ 0) (3)

paired with an exponential decay of the nearest-neighbor
spacing distribution,

P (s) ∼ exp(−Λs) (s→∞) , (4)
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and a linear asymptotic of the number variance,

Σ2(L) ∼ χL (L→∞) . (5)

Our distributions arise as the Gibbs distribution of a one-
dimensional gas of interacting classical particles. It was
noted already by Dyson that the distribution of eigenval-
ues Ej of random matrices is equivalent to the distribution
of particles in a one-dimensional gas with inverse temper-
ature β and the repulsive two-body interaction potential
V (x) = − log |x|, since the joint probability distribution
can be written in the form

PNβ(E1, . . . , EN ) = Z−1
N e−βW (E1,... ,EN ) , (6)

where the normalization constant ZN is the canonical par-
tition function of the gas and

W (E1, . . . , EN ) =
∑
i

U(Ei) +
∑
i<j

V (|Ei −Ej |) (7)

is the total potential energy. The one-body potential U
serves to confine the Ej to a finite stretch of the E-axis,
e.g. U(E) ∝ E2 for the Gaussian ensembles. It determines
the mean particle (level) density, but it is irrelevant for
the statistical correlations on the scale of the mean level
spacing (random matrix universality) as long as U is steep
enough to actually confine the levels [5].

Our plasma model of intermediate spectral statistics
is defined by the same equations (6) and (7), except that
we restrict the second sum on the right hand side of equa-
tion (7) to a finite number k of nearest neighbors. It is this
screening of the Coulomb interaction between the levels,
which is the essential ingredient leading to the proper-
ties (3–5).

Our first motivation stems from the physics of dis-
ordered electronic systems. A 3-dimensional disordered
sample undergoes a phase transition between an insu-
lating and a metallic phase as a function of the dis-
order strength (Anderson metal-insulator transition). In
the insulating phase the electron eigenfunctions are lo-
calized and since non-overlapping eigenfunctions are un-
correlated, the eigenenergies are Poisson distributed. In
contrast, in the metallic phase the eigenfunctions extend
homogeneously over the whole sample and overlap
strongly which leads to a Wigner-Dyson distribution of the
energy levels. Exactly at the transition point the electron
eigenfunctions are extended, but strongly inhomogeneous
(multifractal). This leads to intermediate spectral statis-
tics, which are believed to be universal, i.e. independent
of the microscopic details of the disordered system [6].

Fyodorov and Mirlin [7] calculated the overlap of two
critical eigenstates with slightly different energy and found
that the overlap is one if the energy separation, s, between
the eigenfunctions is of the order of mean level spacing,
while for larger s it decays as a certain power of s. In
contrast, for Wigner-Dyson statistics the overlap is one
for all values of s. Hence one may conclude that at the
critical point of the Anderson metal-insulator transition
only eigenvalues which are separated by at most a few
level spacings interact strongly.

A second motivation which led us to consider the short-
range plasma model is the following. In the context of
quantum chaos the statistical analysis of spectra plays
a major role. In the semiclassical limit the quantum en-
ergy spectra of systems with integrable classical dynamics
generally display Poisson statistics [8], while the Wigner-
Dyson distribution is associated with fully chaotic classi-
cal dynamics [9]. But there are systems which are neither
integrable nor chaotic. In [10] we examined numerically
a few such systems and found that their spectral statis-
tics exhibit all properties (3–5) typical for intermediate
statistics. In particular, the simple expression

P (s) = 4s e−2s (8)

is an excellent fit to the spacing distribution of a sub-
class of systems considered. We further noticed that the
short-range plasma model with nearest-neighbor interac-
tion (k = 1) leads precisely to this distribution (and we
checked that other correlation functions are also well de-
scribed by this model).

Another interesting class of plasma models with
screened Coulomb interaction is the Gaudin model
[11,12] defined by equations (6) and (7) with the two-body
interaction potential

V (x) = −1
2

log
x2

a2 + x2
· (9)

When a → ∞ it reduces to the random matrix models,
while in the limit a → 0 it yields Poisson statistics. For
β = 2 the model is solvable and all correlation functions
can be written in a closed form [11,12]. They obey all three
conditions (3–5) characteristic for intermediate statistics
with the following constants (for β = 2)

χ =
1
α

(1− e−α), (10)

and

Λ =
1
α

∫ eα−1

0

ln(1 + t)
t

dt. (11)

Here α = 2πaρ and ρ is the mean density of the levels.
In general, in any plasma model with short-range inter-

action the nearest-neighbor spacing distribution will de-
cay exponentially at large distances. It is the otherwise
unusual property of long-range interaction in the stan-
dard random matrix models (which manifests itself in the
summation over all pairs of particles in Eq. (7)) that is
responsible for the exp(−cs2) decay of P (s) at large s.

The main drawback of the Gaudin model is that no an-
alytical solution is known for β 6= 2. In contrast, our model
can be solved for arbitrary β (and arbitrary potential).

We stress that our one-dimensional gas model is meant
as a toy model which deserves interest, because it pro-
vides a natural discrete interpolation between Poisson and
Wigner-Dyson statistics, it is analytically solvable, and
it is physically motivated. It does not pretend to furnish
an exact description of the critical statistics of a physical
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model (e.g. the Anderson model in the MIT point). De-
spite significant theoretical progress (see [7,17,24–26] and
references therein), the precise form of the critical dis-
tribution is not yet known though there exist arguments
([24–26]) that the main difference between the standard
random matrix ensembles and the intermediate statistics
is in the form of the correlation kernel, K(x, y), which de-
termines the correlation functions in the random matrix
theory [2]. In the standard ensembles

K(x, y) =
sinπ(x− y)
π(x− y)

· (12)

For intermediate statistics it has been argue that

K(x, y) ≈ a sinπ(x− y)
π sinh a(x− y)

, (13)

where a is a parameter. When a→ 0 the standard random
ensembles are recoved. Non-zero value of a characterizes
the intermediate statistics. The detailed discussion of this
type of critical behavior is beyond the scope of this paper.

The paper is organized as follows. In the next section
we present the calculation of the spacing distributions and
the number variance in the one-dimensional plasma, first
for k = 1, then for k = 2, and finally for arbitrary k.
We compare the resulting distributions with our numeri-
cal results for the pseudointegrable billiards in Section 3.
Finally, in the discussion of Section 4 we compare the
short-range plasma model to other existing interpolations
between Poisson and Wigner-Dyson statistics.

2 The model

Instead of a linear one-dimensional gas as in equations (6)
and (7), where the levels are confined by a one-body
potential U(E), we choose a circular geometry. This is
convenient, since on a circle the levels are automatically
confined and it is unnecessary to introduce an external
potential. The mean level density is then constant and
unfolding is trivial. At the same time the correlations in
the unfolded level sequence are the same as in the lin-
ear geometry (in the limit of a large number of levels),
just as the Gaussian ensembles of random matrix theory
are locally equivalent to Dyson’s circular ensembles. The
method of calculation that we apply in this section goes
back to Gürsey [13] for the case of nearest-neighbor inter-
action, and to van Hove [14] for the general case (see also
Ref. [15]).

We consider N particles (representing energy levels)
on a circle of circumference L. We denote the positive
spacings between neighboring particles by ξj with j =
1 . . .N (see Fig. 1). Hence,

N∑
j=1

ξj = L .

For convenience we use a periodic index, i.e. ξj+N := ξj .
We introduce an interaction between the particles via a re-
pulsive two-body potential V (ξ) (eventually we will choose

1

2

3

N-1

N

L/2

Fig. 1. N particles on a circle of circumference L. The posi-
tive spacings between consecutive particles measured along the
circle are denoted by ξj with j = 1 . . . N .

V (ξ) = − log |ξ| as in random matrix theory), but we let
each particle interact only with its k nearest neighbors to
the left and to the right (k = 1, 2, 3, . . . ).

The canonical partition function of this one-dimen-
sional gas is

ZN (L, β) =

∞∫
0

dξ1 . . .

∞∫
0

dξN δ
(
L−

N∑
i=1

ξi
)

× exp
(
− β

N∑
j=1

W (ξj , . . . , ξj+k−1)
)
, (14)

where

W (ξj , . . . , ξj+k−1) = V (ξj) + V (ξj + ξj+1)
+ . . .+ V (ξj + . . .+ ξj+k−1) . (15)

W (ξj , . . . , ξj+k−1) includes the interaction energy of the
particle which is located at the left of ξj with its k nearest
right neighbors only to avoid double counting. Since for
the application to spectral statistics β is not a free vari-
able, but takes only the values 1, 2, and 4, we suppress
the β-dependence of the partition function in the follow-
ing. For brevity of notation we define

f(ξ) := exp
(
− β V (ξ)

)
, (16)

which for the case of V (ξ) = ln |ξ| becomes

f(ξ) = |ξ|β . (17)

The joint probability distribution of n consecutive spac-
ings then takes the form

p(ξ1, . . . , ξn) =
1

ZN(L)

∞∫
0

dξn+1 . . .

∞∫
0

dξN δ
(
L−

N∑
i=1

ξi

)

×
N∏
j=1

f(ξj)f(ξj + ξj+1) · · · f(ξj + . . .+ ξj+k−1) . (18)

In the following the variable s denotes distances mea-
sured in units of the mean spacing ∆ = L/N . Our aim is
to calculate correlation functions such as the nth nearest-
neighbor spacing distribution P (n, s) (the distribution of
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the distance s between two particles that have n parti-
cles between them) and the two-point correlation function
R2(s) (the probability of finding any two particles at dis-
tance s). The latter is related to the former by summation
over n,

R2(s) =
∞∑
n=0

P (n, s) . (19)

Using equation (18) the nth nearest-neighbor spacing dis-
tribution can be expressed as

P (n, s) =

∞∫
0

dξ1 . . .

∞∫
0

dξn+1 δ
(
s− 1

∆

n+1∑
i=1

ξi
)

× p(ξ1, . . . , ξn+1) . (20)

The number variance can be obtained from the two-point
correlation function with help of the relation

Σ2(L) = L− 2

L∫
0

ds (L− s)(1−R2(s)) . (21)

A convenient way to calculate the asymptotic behavior of
the number variance for large L is to consider the asymp-
totic expansion of the Laplace transform of the two-point
correlation function,

g2(t) =

∞∫
0

ds R2(s) e−ts , (22)

for small t. If

g2(t) =
1
t

+ α0 + α1t+O(t2) (t→ 0) (23)

then we get from equation (21)

Σ2(L) = χL+ C +O(L−1) (L→∞) , (24)

where χ = 1 + 2α0 and C = 2α1 (for the determination
of the constant term we have assumed that R2(s) falls off
faster than 1/s2, which is true for the cases considered in
this article).

2.1 Nearest-neighbor interaction (k = 1)

We begin with the simplest case, where the interaction is
restricted to nearest neighbors, so that the expression for
the partition function equation (14) simplifies to

ZN(L) =

∞∫
0

dξ1 . . .

∞∫
0

dξN δ
(
L−

N∑
i=1

ξi
) N∏
j=1

f(ξj) . (25)

By Laplace transformation with respect to L we obtain

gN (t) :=

∞∫
0

dL ZN (L) e−tL

=
( ∞∫

0

dx f(x) e−tx
)N

=:
[
g(t)

]N
. (26)

The large N limit of the partition function can now be
calculated by performing the Laplace inversion in saddle
point approximation. We have

ZN (L) =
1

2πi

c+i∞∫
c−i∞

dt gN (t) eLt

=
1

2πi

c+i∞∫
c−i∞

dt eN(t∆+log g(t))

∼
[
g(c)

]N
eLc , (27)

where ∆ = L/N is the mean level spacing and c is deter-
mined from the saddle point equation

∆+
g′(c)
g(c)

= 0 . (28)

The expression for the joint probability distribution
of n consecutive spacings equation (18) reduces in the
present case to

p(ξ1, . . . , ξn) =
ZN−n(L−

∑n
i=1 ξi)

ZN (L)

n∏
j=1

f(ξj) .

Using equation (27) and assuming n� N we obtain

p(ξ1, . . . , ξn) =
n∏
j=1

1
g(c)

e−cξj f(ξj) . (29)

Note that the factor g(c)−1 assures the proper normaliza-
tion,

∞∫
0

dξn p(ξ1, . . . , ξn) = p(ξ1, . . . , ξn−1) .

With help of equations (20) and (29) we find for the
Laplace transformation of the nth nearest-neighbor spac-
ing distribution

g(n, t) :=

∞∫
0

ds e−ts P (n, s) =
[
g(c+ t/∆)

g(c)

]n+1

. (30)

Using the relation (19) we calculate the Laplace transform
of the two-point correlation function, equation (22),

g2(t) =
g(c+ t/∆)

g(c)− g(c+ t/∆)
· (31)

The small-t asymptotic behavior is

g2(t) =
1
t
− 1− 1

2∆
g′′(c)
g′(c)

+

+
3 g′′(c)2 − 2 g′(c) g(3)(c)

12 g′(c)2

t

∆2
+O(t2) , (32)
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where we have employed the saddle point equation (28).
At this point we specialize to the random matrix in-

teraction potential, i.e. we substitute equation (17). Its
Laplace transform reads

g(t) =
Γ (β + 1)
tβ+1

(33)

and the saddle point equation (28) yields

c =
β + 1
∆
· (34)

By Laplace inversion of equation (30) we then obtain the
nth nearest-neighbor spacing distribution

P (n, s) =
(β + 1)(n+1)(β+1)

Γ ((β + 1)(n+ 1))
sβ+n(β+1) e−(β+1)s . (35)

In particular, the nearest-neighbor spacing distribution for
β = 1, 2, 4 is (see also Table 1)

P (s) = 4s e−2s (β = 1) ,

P (s) =
27
2
s2 e−3s (β = 2) ,

P (s) =
3125
24

s4 e−5s (β = 4) . (36)

The Laplace transform of the two-point correlation func-
tion equation (31) becomes

g2(t) =
1

(1 + t
β+1 )β+1 − 1

, (37)

from which R2(s) can be computed by Laplace inversion.

R2(s) = 1− exp(−4s) (β = 1)

R2(s) = 1−
(

cos(3
√

3 s/2)

+
√

3 sin(3
√

3 s/2)
)

e−9s/2 (β = 2)

R2(s) = e−5s
4∑
k=0

exp
(

5s e2πik/5 + 2πik/5
)

(β = 4).

With help of equations (23) and (24) and the small t ex-
pansion of equation (37) we find the large L behavior of
the number variance Σ2(L) ∼ χL+ C with

χ =
1

β + 1
, C =

β(β + 2)
6(1 + β)2

·

The spacing distribution and the two-point correlation
function of the simplest model with k = β = 1 are very
close to the corresponding distributions of a number of
different dynamical systems, whose spectral statistics can
be calculated only numerically (see Sects. 3 and 4). In
lack of a deeper understanding of the spectral statistics
of these systems, the plasma model is valuable in that
it provides simple fitting distributions to these numerical
results. We propose to call the statistics derived from the

Table 1. The spacing distributions P (s) and P (1, s) for the
one-dimensional gas model with nearest-neighbor interaction.

(k = 1) β = 1 β = 2 β = 4

P (s) 4s e−2s 27/2 s2e−3s 3125/24 s4e−5s

P (1, s) 8/3 s3e−2s 243/40 s5e−3s 1 953 125/72 576 s9e−5s

plasma model with k = β = 1 the Semi-Poisson statis-
tics. This name was originally motivated from the fact
that if one takes an ordered Poisson distributed sequence
{xn}, the nearest-neighbor spacing distribution of the new
sequence {yn} with yn = (xn + xn+1)/2 coincides with
equation (8) (of course the other correlation functions of
the sequence {yn} are different from those of the plasma
model).

It is interesting to note that again starting from the
sequence {xn} and dropping every second level one ob-
tains a new sequence with precisely the same statistical
distribution as the plasma model with k = β = 1 [16].
More generally, retaining only every (p+ 1)th level of the
sequence {xn} leads to the same statistical distribution as
the plasma model with k = 1 and β = p [16].

2.2 Interaction between nearest and next-to-nearest
neighbors (k = 2)

Next we consider the one-dimensional gas, where the inter-
action is restricted to nearest and next-to-nearest neigh-
bors. In this case the partition function takes the form

ZN (L) =

∞∫
0

dξ1 . . .

∞∫
0

dξN δ
(
L−

N∑
i=1

ξi
)

×
N∏
j=1

f(ξj)f(ξj + ξj+1) .

As in the previous section we first compute the Laplace
transform of the partition function,

gN (t) :=

∞∫
0

dL ZN (L) e−tL

=

∞∫
0

dξ1 . . .

∞∫
0

dξN
N∏
j=1

e−tξjf(ξj)f(ξj + ξj+1) .

To evaluate this integral we introduce the transfer
operator [14]

K(ξ, ξ′) =
√
f(ξ) e−tξ/2f(ξ + ξ′)

√
f(ξ′) e−tξ

′/2 , (38)

so that gN (t) can be rewritten as

gN(t) = trKN

≡
∞∫

0

dξ1 . . .

∞∫
0

dξN K(ξ1, ξ2)K(ξ2, ξ3) . . .

. . . K(ξN−1, ξN )K(ξN , ξ1). (39)
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The operator K(ξ, ξ′) is real symmetric and therefore ad-
mits the eigenbasis expansion

K(ξ, ξ′) =
∑
j

λj φj(ξ)φj(ξ′) (40)

with real eigenvalues λj and eigenfunctions φj(ξ),

∞∫
0

dξ′K(ξ, ξ′)φj(ξ′) = λjφj(ξ) . (41)

The eigenfunctions are normalized according to
∞∫

0

dξ φj(ξ)φj′(ξ) = δj,j′

and we choose the ordering of the eigenvalues by decreas-
ing magnitude (λ0 > λ1 > . . . ). Consequently, in the large
N limit the Laplace transform of the partition function,
equation (39), reduces to

gN (t) =
[
λ0(t)

]N
, (42)

where we have explicitly indicated the t-dependence of
the eigenvalue. Again we perform the Laplace inversion in
saddle point approximation, which results in t being fixed
to t = c,

ZN (L) ∼
[
λ0(c)

]N
eLc , (43)

where c is determined from the saddle point equation

∆+
λ′0(c)
λ0(c)

= 0 . (44)

Next we calculate the joint probability distribution of n
consecutive spacings, equation (18). It turns out to be
convenient to write the eigenfunctions in the form

φ(t; ξ) =
√
f(ξ) e−tξ/2 ψ(t; ξ) (45)

(again the dependence on t is explicitly indicated). We
express the Laplace transform of the integral on the right
hand side of equation (18) in terms of the transfer op-
erator K, use the eigenfunction expansion equation (40),
perform the Laplace inversion in saddle point approxima-
tion (the saddle point equation is identical with Eq. (44)),
and arrive at

p(ξ1, . . . , ξn) =
1

λ0(c)n−1
ψ0(c; ξ1)ψ0(c; ξn) e−c

Pn
i=1 ξi

×f(ξn)
n−1∏
j=1

f(ξj)f(ξj + ξj+1) . (46)

With the help of equation (46) we can now calculate all
correlation functions. The simplest is the nearest-neighbor
spacing distribution

P (s) = ∆
[
φ0(c; s∆)

]2
. (47)

To calculate the asymptotic behavior of the number vari-
ance we first take the Laplace transform of the nth
nearest-neighbor spacing distribution equation (20) which
yields

g(n, t) =
∑
j

(
λj(c+ t/∆)

λ0(c)

)n

×
[ ∞∫

0

dξ φ0(c; ξ)φj(c+ t/∆; ξ) e−tξ/2∆
]2

. (48)

Hence, by equation (19), the Laplace transform of the two-
level correlation function takes the form

g2(t) =
∑
j

λ0(c)
λ0(c)− λj(c+ t/∆)

×
[ ∞∫

0

dξ φ0(c; ξ)φj(c+ t/∆; ξ) e−tξ/2∆
]2

. (49)

For small t this becomes

g2(t) =
1
t
− 1

2∆
λ′′0 (c)
λ′0(c)

− 1 +O(t) , (50)

where we have used the saddle point equation (44) and

1
∆

∞∫
0

dξ ξ φ0(c, ξ)2 = 1 ,

which follows from equation (47) and the definition of the
mean level spacing ∆ (implying

∫
ds sP (s) = 1).

We now specialize to the random matrix interaction
equation (17) and restrict ourselves to the case of β inte-
ger. The integral equation (41) with the eigenfunctions in
the form of equation (45) then reads

∞∫
0

dξ′ e−tξ
′
ξ′β(ξ′ + ξ)βψj(t; ξ′) = λj(t)ψj(t; ξ) . (51)

It is clear from equation (51) that the t dependence fac-
torizes and

λj(t) = t−2β−1λj(1) ,

ψj(t; ξ) = t(β+1)/2ψ(1; tξ) . (52)

This permits us to determine c from the saddle point equa-
tion (44), which yields

c =
2β + 1
∆

· (53)

Using equations (23, 24, 50) we then find the asymptotic
behavior of the number variance,

Σ2(L) ∼ χL , χ =
1

2β + 1
·
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Table 2. Same as Table 1, but with nearest- and next-to-nearest-neighbor interaction.

(k = 2) β = 1 β = 2 β = 4

c0 = 2.4773 c0 = 6.2603 c0 = 35.6018 , c1 = 252.5852

P (s) = sβe−(2β+1)sP
j cjs

j c1 = 6.0681 c1 = 24.9958 c2 = 826.3343 , c3 = 1630.9839

c2 = 3.7159 c2 = 41.1181 c4 = 2127.3725 , c5 = 1880.5911

c3 = 32.2768 c6 = 1103.6323 , c7 = 395.1819

c4 = 10.4386 c8 = 66.6078

d0 = 2.5054 d0 = 5.9771 d0 = 29.4495 , d1 = 104.4681

P (1, s) = s3β+1e−(2β+1)sP
j djs

j d1 = 3.068 d1 = 11.9326 d2 = 169.5742 , d3 = 164.1739

d2 = 0.7516 d2 = 9.5151 d4 = 103.3668 , d5 = 43.2920

d3 = 3.3018 d6 = 11.9204 , d7 = 2.0002

d4 = 0.4746 d8 = 0.1586

In order to determine the spacing distributions we actu-
ally need to solve the integral equation (51). It is straight-
forward to see that it has β + 1 solutions each being a
polynomial of degree β,

ψ(t; ξ) =
β∑
j=0

aj ξ
j . (54)

The coefficients aj are easily obtained by substituting
equation (54) into equation (51). The spacing distribu-
tions then follow from equations (46) and (20). Table 2
shows the explicit expression for the nearest and next-to-
nearest-neighbor spacing distribution for β = 1, 2, and 4.

2.3 General case

Finally we extend the calculation of the previous section
to an interaction between an arbitrary number k of neigh-
boring particles. In this general case the Laplace transform
of the partition function (14) takes the form

gN (t) =

∞∫
0

dξ1 . . .

∞∫
0

dξN
N∏
j=1

e−tξj

× f(ξj)f(ξj + ξj+1) · · · f(ξj + . . .+ ξj+k−1) . (55)

Again we seek to express gN(t) as the trace of the Nth
power of a transfer operator. To this end we define [14]

K(x,x′) = δ(x2 − x′1) δ(x3 − x′2) · · · δ(xk−1 − x′k−2)

×e−tx1/2
√
f(x1)

√
f(x1 + x2) · · ·

√
f(x1 + . . .+ xk−1)

×f(x1 + . . .+ xk−1 + x′k−1)
√
f(x′1 + . . .+ x′k−1) · · ·

×
√
f(x′k−2 + x′k−1)

√
f(x′k−1) e−tx

′
k−1/2 , (56)

where x = (x1, . . . , xk−1) and x′ is defined likewise. One
then easily verifies that

gN (t) = trKN

≡
∫

dx1 . . .

∫
dxN K(x1,x2)

×K(x2,x3) . . .K(xN ,x1) .

It is clear from the definition (56) that the transfer oper-
ator obeys the symmetry relation

K(x,x′) = K(x′T ,xT ) , (57)

where we use the notation xT = (xk−1, . . . , x1). The pres-
ence of this symmetry permits the eigenbasis expansion

K(x,x′) =
∑
j

λj φj(x)φj(x′
T ) , (58)

with the eigenvalues λj and eigenfunctions φj(x) obeying∫
dx′K(x,x′)φj(x′) = λjφj(x) (59)

and the normalization∫
dxφj(x)φj′ (xT ) = δjj′ . (60)

The above considerations show that in the limit of large
N the Laplace transform of the partition function, equa-
tion (55), can again be expressed as

gN(t) =
[
λ0(t)

]N
, (61)

where λ0 is the largest eigenvalue of the transfer operator
(56) which parametrically depends on t. Hence the form of
the partition function and the saddle point equation will
also be the same as in the last section, see equations (43)
and (44).

In the following it will be useful to introduce the func-
tions ψj(t; x) by writing φj(t; x) in the form (again we
indicate the t-dependence explicitly)

φj(t; x) = ψj(t; x)
√
R(t; x) , (62)



128 The European Physical Journal B

where

R(t; x) = exp
(
− t

k−1∑
j=1

xj
)

×
k−2∏
j=0

k−j−1∏
i=1

f(xi + . . .+ xi+j) . (63)

From equation (59) we obtain the equation

∞∫
0

dξk e−tξkf(ξk) f(ξk + ξk−1) . . . f(ξk + . . .+ ξ1)

× ψj(t; ξ2, . . . , ξk) = λj(t)ψj(t; ξ1, . . . , ξk−1) , (64)

which in conjunction with the normalization condition

∞∫
0

dxR(t; x)ψj(t; x)ψj′(t; xT ) = δjj′ (65)

determines ψj(t; x) and λj(t).
For the calculation of the joint probability distribution

of n consecutive spacings, equation (18), we follow the
same steps as in the last section, except that we have to
distinguish two cases, namely n < k− 1 and n ≥ k− 1. In
the former case,

p(ξ1, . . . , ξn) =

∞∫
0

dξn+1 . . .

∞∫
0

dξk−1

φ0(c; ξ1, . . . , ξk−1)φ0(c; ξk−1, . . . , ξ1) , (66)

where c is determined from the saddle point equation (44),
while in the latter case,

p( ξ1 , . . . , ξn) = λ−n+k−1
0 ψ0(c; ξn, . . . , ξn−k+2) e

−c
nP

i=1
ξi( k−1∏

j=0

n−j∏
i=1

f(ξi, . . . , ξi+j)
)
ψ0(c; ξ1, . . . , ξk−1) . (67)

Equations (66) and (67) in conjunction with equation (20)
allow the calculation of the spacing distributions. For ex-
ample, the nearest-neighbor spacing distribution becomes

P (s) =

∞∫
0

dξ1 . . .

∞∫
0

dξk−1 δ(s− ξj/∆)

φ0(c; ξ1, . . . , ξk−1)φ0(c; ξk−1, . . . , ξ1), (68)

where j may take any value from 1 to k−1. In order to de-
termine the asymptotic behavior of the number variance,
we follow the same procedure as in the last section, i.e. we
calculate the Laplace transform g(n, t) of the nth nearest-
neighbor spacing distribution, sum this over n to obtain
the Laplace transform of the two-point correlation func-
tion, see equation (19), and find its small-t asymptotic,

which determines the asymptotic behavior of the number
variance, see equation (24). For n < k − 2 we get

g (n, t) =

∞∫
0

dξ1 . . .

∞∫
0

dξn+1 e
− t
∆

n+1P

i=1
ξi
∞∫

0

dξn+2 . . .

. . .

∞∫
0

dξk−1 φ0(c; ξ1, . . . , ξk−1)φ0(c; ξk−1, . . . , ξ1) ,

whose behavior for small t is simply g(n, t) = 1+O(t) due
to the normalization equation (60). For n ≥ k− 2 we find

g(n, t) =
∑
j

(λj(c+ t/∆)
λ0(c)

)n−k+2

 ∞∫
0

dξ1 . . .

∞∫
0

dξk−1

× e
− t

2∆

k−1P

i=1
ξi
φ0(c; ξ1, . . . , ξk−1)φj

(
c+

t

∆
; ξk−1, . . . , ξ1

)2

.

Summing over n and expanding asymptotically for small
t we obtain

∞∑
n=k−2

g(n, t) =
1
t
− 1

2∆
λ′′0 (c)
λ′0(c)

− (k − 1) +O(t) ,

where we have used the saddle point equation (44) and∫
ds sP (s) = 1 with P (s) given by equation (68). Since

the k − 2 remaining terms each contribute 1 + O(t), we
finally get

g2(t) =
1
t
− 1

2∆
λ′′0 (c)
λ′0(c)

− 1 +O(t) . (69)

Note that this expression depends on k only by the largest
eigenvalue of the corresponding transfer operator and it is
identical with equation (50).

At this point we again specialize to the random ma-
trix interaction equation (17) with integer β. The integral
equation (64) which determines λj(t) and ψj(t; x) then
reads

∞∫
0

dξk ξ
β
k (ξk + ξk−1)β . . . (ξk + . . .+ ξ1)βe−tξk

× ψj(t; ξ2, . . . , ξk) = λj(t)ψj(t; ξ1, . . . , ξk−1) . (70)

The t-dependence of the eigenvalues and eigenfunctions
factorizes and

λj(t) = t−kβ−1λj(1) ,

ψj(t; x) = t(k−1)(kβ+2)/4ψ(1; tx) . (71)

This permits us to determine c from the saddle point equa-
tion (44), which yields

c =
kβ + 1
∆

· (72)
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Using equations (23, 24, 69) we then find the asymptotic
behavior of the number variance,

Σ2(L) ∼ χL , χ =
1

kβ + 1
(L� 1) . (73)

In critical statistics this quantity is related with a certain
(multi)fractal dimension [17]

χ =
η

2d
, (74)

where d is the dimensionality of the system and η = d −
D2 and D2 is one of the multifractional exponent defined
through the behavior of the mean inverse participation
ratio with the size of the system, L,〈∫

ddx|ψn(x)|4
〉
∼ L−D2 . (75)

In our model geometrical interpretation of non-zero values
of χ (73) remains unclear.

In order to find the spacing distributions explicitly we
need to determine ψ0 and λ0 from equation (70) and then
use equation (66) or (67) together with equation (20). The
solutions of equation (70) have the form

ψ(t; ξ1, . . . , ξk−1) =
β∑

i1=0

3β∑
i2=0

. . .

(k−1)k/2∑
ik−1=0

ai1i2...ik−1 ξ
i1
1 ξ

i2
2 . . . ξ

ik−1
k−1 . (76)

The coefficients ai1i2...ik−1 must be determined numeri-
cally by substituting equation (76) into equation (70). In
Tables 1, 2, and 3 the explicit form of P (s) and P (1, s)
are shown for k = 1, 2, and 3 respectively, where in each
case the distributions for β = 1, 2, and 4 are given.

These calculations become more and more tedious as
k or β increase. However it is straightforward to find the
large s asymptotic of the spacing distributions,

P (n, s) ∼ e−Λs , Λ = kβ + 1 (s� 1) . (77)

Note that in our model the asymptotics of the spacing dis-
tributions and the number variance are related as follows,

Λ =
1
χ
· (78)

For critical distribution of of the Anderson model at MIT
point it is often assumed [18] that

Λ =
1

2χ
· (79)

To derive this relation it was assumed [18] that the prob-
ability to find n levels in an interval which contains in
average L levels has the Gaussian form

Pn(L) ∼ exp
(
− (n− L)2

2Σ2(L)

)
, (80)

where Σ2(L) as above is the number variance.
Therefore the probability that there is no levels inside

this interval (i.e. the nearest-neighbor distribution) is

P0(L) ∼ exp
(
− L2

2Σ2(L)

)
. (81)

Assuming that, when L → ∞, Σ2(L) → χL one gets
equation (79).

But it is clear that the assumption that Pn(L) has the
Gaussian form (80) even for small n is an oversimplifica-
tion and cannot be strictly valid in general. In our short-
range plasma model Pn(L) is like the one for the Pois-
sonian process which gives equation (78). In the Gaudin
model with β = 2 there is no simple relation between Λ
and χ (see Eqs. (10) and (11)) though for small χ one
obtains equation (79).

This difference between the Gaudin model when χ→ 0
and the relation (78) derived in our short range plasma
model is probably related with the different truncation of
the interaction between two levels. In the former model
the distance between two levels is important while in the
later one only the number of levels between the two given
levels is taken into account.

Numerical calculations of the Anderson model at the
MIT point and certain analytical arguments [25,26] based
on the kernel (13) are in the favor of the relation (79) at
least in the limit of small χ. The short range plasma model
demonstrates that there exist (mathematical) models of
intermediate statistics which do not obey this relation.

3 Spectral statistics of pseudointegrable
billiards

Pseudointegrable systems, as introduced by Richens and
Berry [19], are dynamical systems which are neither inte-
grable nor chaotic. The difference between integrable and
pseudointegrable systems is that for the former the phase
space is foliated into 2-dimensional surfaces with genus
g = 1 (i.e. tori) while for the latter it is foliated into sur-
faces of higher genus. The simplest example of pseudoin-
tegrable systems is plane polygonal billiards whose angles
are all rational multiples of π. For these models the genus
of the corresponding surface is given by

g = 1 +
N

2

∑
k

mk − 1
nk

, (82)

where mkπ/nk are the interior vertex angles of the poly-
gon, N is the least common multiple of the integers nk,
and the sum is taken over all vertices of the polygon. The
polygons with g = 1 (e.g. rectangle, equilateral triangle)
are integrable, whereas those with g ≥ 2 are pseudoin-
tegrable. In references [20,21] the spectral statistics of a
number of pseudointegrable polygonal billiards have been
investigated numerically (and in the last reference even ex-
perimentally using a microcavity) and it was found that
they display level repulsion but deviate from random ma-
trix theory.
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Table 3. Same as Table 1, but with three interacting neighbors.

(k = 3) β = 1 β = 2 β = 4

c0 = 2.1342 c0 = 4.9711 c0 = 24.0711 , c1 = 282.9984

P (s) = sβe−(3β+1)sP
j cjs

j c1 = 7.8196 c1 = 31.6156 c2 = 1615.27 , c3 = 5952.78

c2 = 11.6945 c2 = 93.9581 c4 = 15890.11 , c5 = 32666.46

c3 = 9.0743 c3 = 171.4838 c6 = 53678.64 , c7 = 72222.20

c4 = 3.6855 c4 = 212.8904 c8 = 80836.91 , c9 = 76044.48

c5 = 0.6259 c5 = 188.1012 c10 = 60480.73 , c11 = 40759.87

c6 = 120.0046 c12 = 23247.21 , c13 = 11165.36

c7 = 54.6739 c14 = 4473.73 , c15 = 1472.98

c8 = 17.0418 c16 = 389.3105 , c17 = 79.6241

c9 = 3.2829 c18 = 11.8577 , c19 = 1.1466

c10 = 0.2968 c20 = 0.0541

d0 = 1.1340 d0 = 1.6110 d0 = 2.9196 , d1 = 29.5956

P (1, s) = s3β+1e−(3β+1)sP
j djs

j d1 = 3.6334 d1 = 8.8782 d2 = 146.1401 , d3 = 467.9231

d2 = 5.0189 d2 = 23.0847 d4 = 1090.9150 , d5 = 1971.2442

d3 = 3.7112 d3 = 37.4284 d6 = 2868.9524 , d7 = 3449.8348

d4 = 1.5037 d4 = 42.0839 d8 = 3488.0347 , d9 = 3001.6809

d5 = 0.3100 d5 = 34.4593 d10 = 2216.98 , d11 = 1412.97

d6 = 0.0259 d6 = 20.9804 d12 = 779.3162 , d13 = 372.3224

d7 = 9.5327 d14 = 153.8623 , d15 = 54.8050

d8 = 3.2010 d16 = 16.7526 , d17 = 4.3271

d9 = 0.7747 d18 = 0.94224 , d19 = 0.1687

d10 = 0.1284 d20 = 0.0241 , d21 = 2.76× 10−3

d11 = 0.0131 d22 = 2.5× 10−4 , d23 = 1.9× 10−4

d12 = 6.2× 10−4 d24 = 6.2 × 10−7

In [10] a number of different models had been consid-
ered numerically which clearly demonstrate the existence
of intermediate statistics. In this section we present a more
detailed analysis of the data.

We consider the sequence of pseudointegrable bil-
liards (with Dirichlet boundary conditions) in the shape
of the right triangle with one angle equal π/n, where
n = 5, 7, 8, 9, . . . , 30 (the triangles with n = 3, 4, 6 are
integrable) and using the boundary integral method we
have calculated the first 20 000–30000 levels for all these
triangles (for some triangles even up to 80 000 levels).

Figure 2 shows the difference between the cumulative
nearest-neighbor spacing distribution

N(s) =
∫ s

0

dxP (x) (83)

(calculated from the levels 5000–20000) for all triangles
and the Semi-Poisson prediction

N1(s) = 1− (2s+ 1) exp(−2s) (84)

which is obtained from our model with β = k = 1 (see
Eq. (36)).

Roughly four close groups of curves are observed. For
the first group, consisting of the curves corresponding to

0 2 4
−0.10

−0.05

0.00

0.05

s

GOE

dN
(s

)

Fig. 2. Difference between the cumulative spacing distribution
for the pseudointegrable rational right triangles with n ≤ 30
(calculated from the levels 5000–20 000) and the Semi-Poisson
curve. See explanation in the text.
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0 2 4 6
s

−0.01

−0.005

0

0.005

Fig. 3. The same as in Figure 2 but for n = 12. The thin
line corresponds to 1–34 000 levels and the thick one includes
34 001–68 000 levels.

triangles with n = 5, 8, 10, 12, this difference is less than
one percent and consequently the spectral statistics of
these billiards is quite well described by the Semi-Poisson
model. The remaining three groups correspond to the tri-
angles with n = 7, 14, 18, with n = 9, 16, 20, 24, 30, and
the rest.

The first conclusion from this and many others fig-
ures is that spectral statistics of pseudointegrable systems
is not universal and depends on the billiard angles. The
grouping of the triangles which emerges from Figure 2 does
not agree with the classification of the billiards according
to their geometrical genus g. In first approximation the
spectral statistics of the above triangular billiards are rea-
sonably well described by a quantity q which we proposed
to call “arithmetical genus”

q(n) =

{
g(n), n odd
φ(n)/2, n even.

(85)

Hence q is equal to the “geometrical genus” g for n odd
but for even n it is given by half the Euler function φ(n)
(equal to the number of integers not exceeding and rela-
tively prime to n). The first group now correspond to the
triangles with q = 2, the second to q = 3, the third to
q = 4, and the last to q > 4. It seems that for q > 4 the
spacing distribution does not change noticeably any more,
but the resulting distribution may differs from the Wigner-
Dyson spacing distribution. We stress that this classifica-
tion is only an approximative one and serves mostly for
the crude arrangement of the spectral statistics of different
triangles.

In Figure 3 we present the evolution of the cumula-
tive nearest-neighbor distribution for the triangular bil-
liard with n = 12 with increasing energy. It is clearly
seen that for higher energy the spacing distribution moves

0 2 4 6
s

−0.15

−0.10

−0.05

0.00

0.05

0.10

Fig. 4. The difference between the cumulative next-to-nearest
spacing distribution for n = 12 and the Semi-Poisson predic-
tion. Two curves are the same as in Figure 3. The dotted line
corresponds to GOE.

closer to the Semi-Poisson result (though a limiting dis-
tribution may deviates from the Semi-Poisson one).

In Figure 4 the difference between the cumulative next-
to-nearest distribution for the same triangle and the Semi-
Poisson prediction (see Tab. 1) is plotted. Once more we
observed that this distribution is close to the Semi-Poisson
result and that, with increasing energy, the agreement is
better.

The main conclusion of this section is that for certain
pseudointegrable systems the short-range spectral statis-
tics is very close to the Semi-Poisson statistics (though
theoretical explication of this fact is not yet clear).

4 Summary and discussion

In order to model intermediate spectral statistics, we con-
sidered a one-dimensional gas of energy levels interacting
via a logarithmic pair potential, whose action is restricted
to a small number of nearest neighbors. As shown in Sec-
tion 2, its correlation functions can be calculated analyt-
ically, so the model deserves interest as a simple refer-
ence point for comparisons with numerics. In Section 3
we performed a comparison with the spectral statistics of
a number of pseudointegrable billiards and demonstrated
that the plasma model with nearest-neighbor interaction
(the Semi-Poisson model) gives an excellent phenomeno-
logical description of the short-range spectral observables
of certain pseudointegrable systems. Unfortunately a full
theoretical understanding of the spectral statistics of pseu-
dointegrable systems is still lacking.

Of course there are many ways to interpolate be-
tween Wigner-Dyson and Poisson statistics. For the spac-
ing distribution a well-known interpolation is the Brody
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distribution [22], which shows fractional level repulsion.
Since for intermediate spectral statistics P (s) ∼ sβ for
small spacings, the Brody distribution cannot give an ad-
equate description. A very natural way to construct inter-
polating ensembles is to take a weighted average between
the ensemble of diagonal random matrices and one of the
standard random matrix ensembles, e.g. for β = 1

H = HPoisson + λHGOE (86)

(see e.g. Ref. [23]). However, as we checked numerically, for
no value of λ the resulting distribution is close to the dis-
tribution (8), which we have found to be an excellent fit to
the spacing distribution of the pseudointegrable triangles
with q = 2 and also to that of several other systems [10].
Hence this interpolation do not seem to be suitable for the
description of intermediate statistics.

All data suggest that a necessary requirement of theo-
retical description of intermediate statistics is the screen-
ing of two-body potential. Its precise form is not yet
known (but see [24–26]) and may depend on the problem
considered.

The authors is greatly indebted to A. Pandey who had investi-
gated the short-range plasma model in the framework of band
random matrices and whose unpublished notes were useful to
check our calculations.
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